

2

APPSEC - IRON MAN
Application Security through Iron Man’s mind

Cássio Batista Pereira

3

AppSec - Iron Man
Application Security through Iron Man’s mind

Cássio Batista Pereira
ALL RIGHTS RESERVED

No permission is given for any part of this book to be reproduced, transmitted in any form or by
any means; electronic or mechanical, stored in a retrieval system, photocopied, recorded,

digitized or otherwise. Any such action requires the appropriate written permission from the
author.

Independent publishing

Contact:

Cássio Batista Pereira
cassio@cassiobp.com.br

4

SUMMARY

Preface 8
Author 10
Brief intro 13
Threat Modeling 17

Contextualizing 18
Threat Modeling 19

Threats 19
Goals 19
Requirements 19
Lessons learned 19
Reflexion 20

Deep knowledge 20
Threat Modeling - HOW 20

Use case - Veronica A.K.A. Hulk Buster A.K.A. Mark XLIV 21
Threat 21
Goals 21
Requirements 22
Lessons learned 22

Incident Response - Learning from facts and mistakes 22
Back to Iron Man I 24
When a vulnerability became a feature 24

The unimaginable threats 27
When Threat Modeling does not work 28

A fix for each problem? 28
Lessons learned, always 29
Frameworks 30
Conclusion 31

Simple example of Threat Modeling 31
DevSecOps 33

Before DevSecOps - Security Teams 36
Before DevSecOps - Development Teams 36
Culture - People 🤝 37
Process - Strategies ⚙ 37
Tools - Scale ⛰ 37
Automation 🤖 37

Automation as a critical factor of success 38

5

Conclusion 38

Vulnerability Management 39
Vulnerability Management Process 40
Tools 42
Reference 42

Application Monitoring 43
Do you know what is the normal behavior of your applications? 45

Information is the key 46
Logs 46

Application Security Program 49
Points to consider 50

Why? 52
Why? Well… 54
Conclusion 55

Bônus 56
The End 60

6

7

Preface

8

Cássio B. Pereira
Application Security Expert

9

Author

Nice to meet you, I'm Cássio Batista Pereira, a.k.a. @cassiodeveloper, I'm a

Software Developer and Architect by training. I work as an Application Security
Engineer and help companies and professionals build safer solutions. I have over two
decades of experience in the development market in the most varied business segments,
where I gained knowledge to work with different technologies, languages, frameworks
and processes. I am an evangelist for the Secure Development culture and share
knowledge about AppSec, DevSecOps and SDLC, more details here.

You can also find a version of this book here in a presentation format, enjoy.

10

https://linktr.ee/cassiodeveloper
https://cassiodeveloper.com.br/AppSec-IronMan/

AppSec - Iron Man

11

Warning

This book will touch on a few movies of the MCU - Marvel Central Universe, and

for that a lot of spoilers will show up, all the movies are quite old so, by now, you
should have watched all of them. But, in case you are not a fan of superhero movies and
haven't watched so far, be warned that there will be a lot of spoilers. So, I either
recommend you to watch all the movies before proceeding, or even better, read this book
right now, and enjoy the movie experience after (since you will know details that most
people have no idea about) even more..

12

Chapter 0

Brief intro

“Safety is everyone's responsibility”

—Cássio B. Pereira

13

Tony Stark, also known as Iron Man, is a fictional character in the Marvel Comics

universe. He was created by writer and editor Stan Lee, developed by scripter Larry
Lieber, and designed by artists Don Heck and Jack Kirby. Tony Stark made his first
appearance in "Tales of Suspense" #39 in 1963.

In the Marvel Cinematic Universe (MCU), Tony Stark is portrayed by actor
Robert Downey Jr. He is a central figure in the MCU and played a crucial role in the
formation of the Avengers.

Background:

Tony Stark is a brilliant industrialist and engineer who inherits Stark Industries, a
multinational weapons manufacturer, from his father, Howard Stark. He is known for
his exceptional intellect and inventiveness. Stark's life takes a dramatic turn when he is
captured by terrorists and forced to build a weapon of mass destruction. Instead, he
builds a powered suit of armor to escape, marking the birth of Iron Man.

Iron Man Suit:

The Iron Man suit is a technologically advanced powered exoskeleton that
enhances Stark's strength, durability, and abilities. Over time, Stark continually upgrades
and refines the suit, creating numerous variations with different capabilities.

Character Development:

Tony Stark undergoes significant character development throughout the comics
and MCU. Initially portrayed as a playboy and a self-centered genius, he faces moral
dilemmas that lead him to reassess his priorities. Stark evolves into a more responsible
and altruistic individual, using his technology to fight against threats to humanity.

Role in the MCU:

In the MCU, Tony Stark plays a pivotal role in the "Iron Man" trilogy, "The
Avengers," and several other films. He is a founding member of the Avengers and is
instrumental in the battle against various formidable adversaries, including the Chitauri
invasion, Ultron, and Thanos.

Legacy:

Tony Stark's character arc reaches a poignant conclusion in "Avengers: Endgame"
(2019), where he makes the ultimate sacrifice to save the universe. His legacy lives on,
and the impact of his contributions to technology and heroism continues to shape the
MCU.

14

Influence:

Tony Stark's character has become iconic, representing the intersection of
intelligence, charisma, and heroism. His journey from a self-centered genius to a selfless
hero has resonated with audiences, making Iron Man one of the most beloved and
enduring characters in the Marvel universe.

Author's view:

 Now that you know (if you didn't before) a bit more about Iron Man and Tony
Stark (same person, but while reading this book, you might see both references) let me
bring you my personal opinion / view of the character.

 First, I know you are anxious about the AppSec and tech part but, it's crucial to
understand his mind in order to understand his achievements and remarkable feats, so
don't skip this part or later some things will not make sense at all. So, Tony is a human
right? Just a man, yes, with a lot of money and I mean, A LOT OF MONEY, a huge
knowledge and strong personality, but he is just a man, with problems also, specially in
relationships, considering his parents were most of the time absent, he was usually
feeling loneliness, that's why (maybe) part of his hobby, was enjoying parties and
nightlife spending his fortune with nice girls and awesome cars. But ok, this is just part
of his life and character, one important fact for us here is that, he grow as a human being,
he learn with his own mistakes, recognize them, and grow, and because of that he wants
also everyone around him to grow as well, to improve and to be better, as human beings.
And we see all that during his development in the movies, I'm not a big fan of the
comics, I might have read one or two when I was teenager, but that's all, my whole focus
is on the MCU movies, so please take into consideration that I might miss some
information about him.

 As I said, as a man Tony knows his limitations and strengths as, I would say,
every man should know because this allows and "make easy" our journey called life, and
being a genius as Tony is, might sounds arrogant sometimes (all the time), or even
careless in some situations, but do not fool yourself, he is not.

 In this book, I will take you on a journey through the MCU (with focus on Iron
Man), considering the movie trilogy Iron Man 1, 2 and 3 and of course his appearances
in other movies like The Avengers, Avengers Age of Ultron, Avengers Infinity War,
Avengers End Game, Captain America Civil War, Spiderman Homecoming and maybe
others (never remember all), and during this journey we will learn how Tony’s mind
works and benefit from it to implement Application Security in our real lives, and it
doesn’t matter if you are a Developer, a QA Engineer, a DevOps or a Cyber Security
Engineer, if you are involved in the SDL somehow, you must know AppSec. We will see
a lot of references to the movies, and learn from these references how Tony thinks and
how we should also think to make sure our software is, well, safer in a way.

15

I strongly recommend you to watch ALL the movies, either during this reading,

before the reading, or after reading this book. Things will make more sense, you will
have the same emotions and feelings that I had writing this book, and you will have fun
and good time watching, maybe you can do a “movie marathon” on a cold weekend
alone, or even with your partner, nice time to be together and discover / learn
something new. Ah but I don’t like superheroes, Marvel etc… I DON’T CARE. WATCH
THEM ALL. You might start liking it, you might see that fantasy and fiction are good to
our imagination, see this book!

16

Chapter 1

Threat Modeling

“The art of finding problems even before the software exists.”
—Cássio B. Pereira

17

Contextualizing

In the first movie Iron Man 1, Tony is kidnaped by terrorists and kept as a
hostage in a cave, is the beginning of all for Iron Man to become who he is. And I will
not write the whole movie script here, but it’s important to set some ground. During the
attack of the terrorists on the convoy that Tony is, a few soldiers die and Tony see
himself next to an active missile / bomb where is written “Stark Industries”, such an
irony that his own product now, is threatening his life, and his face just not show
surprise that “oh fuck a bomb here…”, but is more “oh fuck, MY BOMB here?” because
he knew who his customers were, and definitely those terrorists were not on his
customer list, so how the hell his missile was there? And this moment is crucial, because
he realizes that his father's legacy and now his own work, is being used not to protect
America, but is in the hands of bad guys that are killing innocent people and he doesn’t
want that.

 In the cave after a few days, Tony realizes with the help of another hostage that
he must escape, because if he creates what the terrorists want America and the world
would be even in more danger, considering that they wanted the technology of the Jerico
missile, a new powerful weapon designed by Tony. He then pretends to be building the
Jerico missile, but he is building something different, something that would be his
greatest legacy later on and for that moment, his salvation the Mark I, the first suit, the
Iron Man suit, and literally Iron, because that was the materials he had in the cave.

18

Threat Modeling

 It’s not clear in the movie of course, but Tony does some kind of Threat Modeling
to create the first suit, otherwise he would not create it if he was not sure that it would
succeed, or at least a high % chance of success. Because let’s remember, he is a man, any
strong punch, bullet, knife can kill him, so he did what?

Threats

The main threat was armed men, considering few types of guns and machine
guns.

Goals

 The main goals included:

● To escape from the cave - Go out;
● Go as far as possible - Not stay at the entrance;
● Take no damage - He didn’t want to die;
● Attack - In order to avoid some threats;
● Hope to be found by USA;

Requirements

 The main security requirements included:

● To escape from the cave - Possibility to break doors and avoid enemies;
● Go as far as possible - Fly;
● Take no damage - Bullet proof;
● Attack - Flamethrower, punches and kicks;
● Hope to be found by USA - Being out of the cave would be easy to the

USA Army to find him;

Lessons learned

From this, we can get a few lessons:

● With the material he had, he did the best what he could;
○ Mark I, would not defeat Thanos or even be enough to fight

Captain America and the Winter Soldier later, but for THAT
MOMENT, was enough.

● Done is better than perfect!

19

Reflexion

 It’s important for us to learn from this first moment of the book asking ourselves
some questions:

● How many times have you thought about the threats that your software might
face before you release it to production?

● Have you ever considered that your company, brand, software etc might be a
target for cyber criminals?

● Did you ever consider the impact on society in case your software is impacted by
a cyber attack?

● Did you ever imagine that it’s possible to brainstorm some threats just by the list
of functional requirements?

 Be honest, if Tony Stark was not 99% sure that the first suit would bring him
freedom from the terrorists, do you think that he would do it anyway? Or, he did it
because he was sure that he would succeed somehow, considering the threats and the
protection that he had, he was basically thinking, the threats are level 3 and I have
defense level 5, so let’s go.

In our software development lifecycle, that’s the same mindset we must have:

● What are the threats that the functionality X might face?
● What are the mitigations that I should implement to reduce the impact or even

eliminate the threat?
● And do all this, before the software goes to production. Otherwise, we are at risk.

Deep knowledge

Threat Modeling - HOW

I want here to point out some tips for your regarding Threat Modeling:

● Threat modeling should be used in environments where there is significant
security risk and not in the whole system.

● Threat modeling can be applied at the component, application, or system level.
○ I recommend the most granular possible (functionality), to don’t have a

huge model that will be hard to read and understand.

20

Use case - Veronica A.K.A. Hulk Buster A.K.A. Mark XLIV

 In Avengers Age of Ultron, Hulk got bewitched by Wanda Maximoff the Scarlet
Witch, and ran out of control as never before. By then, Bruce Banner was already
(almost) able to control Hulk, as we saw in The Avengers and also in the post credit
scenes of The Incredible Hulk. But, together Bruce and Tony designed the Veronica in
case Hulk gets crazy again, now it would be possible to, at least fight him to control the
damages and losses, before was not.

 So, Veronica was a 100% Threat Modeling job, it was exclusively designed to
fight / contain Hulk in case of an unintentional change of Bruce Banner, and it almost
didn’t work. During the fight, we can see that Veronica has a lot of functionalities to
contain Hulk, not to destroy / kill him, but to stop his attacks, to try to make him sleep
with some kind of green smoke poison, to block his punches with a hand locker… and
Tony almost lost. Not to mention that in the beginning, some sort of a cage locks Hulk
down, unsuccessfully. The movie does not show this, but Bruce and Tony worked
together, discussed the Hulk attacks, strengths and weaknesses, possibilities and
consequences to create the perfect HulkBuster suit, not only to stop Hulk but also to
protect Tony’s life. Note that in the image above, as soon as they punch each other at the
same time, Tony’s face is “surprised”, because he knows the power of his Suit, he has all
the calculations of how strong he is, and still, Hulk punch was in the same level, in fact
the threat is more scary when it happens than when we just think about it.

Threat

The main threat was Hulk.

Goals

 The main goals included:

21

● To stop Hulk - Make him stop attacking / damaging innocence, the city

etc;
● Go as far as possible - Not stay in the city, but at a non populated place;
● Take soft damage - He knew he would take some punches;
● Attack - In order to archive the first goal as well;

Requirements

 The main security requirements included:

● To stop Hulk - Cage, strong and agile enough.
● Go as far as possible - Fly, arm lock;
● Take soft damage - Only iron would not be enough;
● Attack - Fly, arm lock, laser and poison;

Lessons learned

From this, we can get a few lessons:

● The real threat is different than the theory threat, usually worse;
● Even with the whole mitigations in place, the damages still can be

harmful;
● Time and research are necessary;
● Communication is very important;
● Be ready to improvise at any time;

Incident Response - Learning from facts and mistakes

Another very effective way of doing Threat Modeling is to use the incidents that
happened in the past, history of what and how it happened helps teams to create
bullet-proof softwares, at least proof against known threats that were already reality to
your context. Like the case below:

In Iron Man III, Tony flew to Tennessee after being attacked by the terrorist group
led by The Mandarin, his suit was a prototype that’s why the flight happened, before he
was just planning the flight with Jarvis. Almost heading to Tennessee and his suit was
running out of energy, Jarvis alerted him and he felt almost with 0% energy. Of course he
needed to get out of the suit in order to go anywhere, now by walk. But it was winter, he
was freezing in the snow. It’s good to remind you that, as a man, Tony now was with soft
clothes in the hard snowing winter, which is dangerous to any human in these kinds of
weather conditions. Also, he was quite damaged after the “fight” with the terrorist
group that attacked him, he was hungry, dirty and thirsty and far from basic resources.

22

And then, when he created the new Spider Man suit later in the Spider Man
Homecoming movie, well…. It was equipped with a heater! When Peter fell into a lake
and was rescued by Iron Man, Tony said:

 It’s pretty clear already that Tony’s mind is amazing and he is always improving,
he had a problem, that he fixed that’s pretty basic no? Well, no… our softwares daily
presents bugs and vulnerabilities that we don’t even bother to check, we just put them
into some kind of nice listed name, such as Backlog, and one day if nothing else more
important like breathing popup, we will handle it. Tony shows us that we might make
mistakes, but we can’t keep them, we need to make it better next time. In this case, not
only for himself but also for others, we care about others, right? Our software usually
intends to bring value to our customer, that intends to bring value to the end customer,
but in case of a problem, everyone loses.

 Let’s also make something clear here, he had a minor problem considering the
whole Iron Man threats universe, being exposed to snow is not a “huge bug”, but
something that considering the environment and circumstances, could kill him, so why
not fix it?

23

Summary so far

Let’s have a break from the flow of the topic and summarize some of what we
saw so far:

● Your software version 1.0.1 must be better than 1.0.0, better in terms of security,
not only new nice features that “bring value to your customer”. FUCK IT. If your
new feature is a door for a cyber attack, you are not bringing value, you are
TAKING VALUE.

● Think like Tony Stark! Ok you might not be a genius, but try it!
● Not only fix bugs, you must improve security. Vulnerabilities and business logic

flaws must be fixed.
● There is no security, without proper SDL process and team commitment.
● Imagine that each release of yours is a new Mark suit that Tony built.
● Each suit is designed to protect his life, your software can’t just bring value if the

value does not protect your customer / user as well. So each version of your
software must also protect your customer / business.

Back to Iron Man I

Right after being rescued by Coronel Rodes after escaping from the terrorists,
Tony got home and started working on improving already his great creation, the Iron
Man suit. He created the first fully operational suit, after a few testing sessions failed
(that’s what tests are made of, right?) now he was able to have a stable flight, he had the
real time monitoring and assistance from the AI Jarvis, and not only iron as material for
his suit, but a better and durable material, and of course, an improved version already of
the main component of the suit, the power source, The Arch React. Being able to fly, he
took his first flight directly reaching the stratosphere and having an icing problem.

At the end of the movie, with Mark III he fixed the problem, now he was able to
fly to the stratosphere without icing, but the villain didn't because he was using a
version based on Mark II, with the icing problem. Wrong fork dude, wrong fork!

 iron man icing problem

When a vulnerability became a feature

1. In Iron Man II at the fight with the Whiplash, Tony suffered a lot of damage from
the energy of the Whiplash whips, it was supposed to be an easy fight, but was
not the reality. By then, we were already able to see a huge improvement in the
Iron Man suit, now Tony didn’t need to be at one place to put on (mount) the
suit, now the suit was portable in his suitcase, much more effective right?

24

https://www.youtube.com/watch?v=BPPValf3lcY

2. Later in The Avengers, during the fight (misunderstanding) against Thor, he was
now able to absorb the energy from the thunder, and get less damage. See? Now
his suit was able to take less damage due to a better material, and also absorb the
energy from the attacks, he learned that in case some enemy has “an energy
weapon” he can benefit from that, isn’t that brilliant? The improvements on the
suit regarding material are constant, every new version they are better, somehow
and this by definition is a continuous improvement process that he has.

3. Then, in Avengers Ultimato his suit now is equipped with so many features that
is almost impossible to describe, with the whole nanotech capabilities the
limitations were only his creativity I’d say. But, during the confrontation with
Thanos, together with Thor and Captain America, he now was able to open his
back like a “flower” to be able to absorb the full energy from the thunder that
Thor invoked and become a powerful attack weapon firing a strong combination

25

of Thunder and his Arc React laser against Thanos. Yes, it’s fine that Thanos
easily handled it, but damn that’s genius.

 This sequence shows us that his is not only worried about protecting himself
with the best material suit, his always improving the capacity of attack as well, and what
once was a bug, poor material, a lot of damage and no benefits, now was a suit with a
stronger material and energy absorber capable of defending and attacking at the same
time. Not to mention some details regarding the energy absorption that the whole suit
power source needed to be prepared for, right? How much energy a thunder can
produce? How much energy was he able to store before? All this calculations and details
are not there, but implicit show us that a fucking hard work was made. Not to mention
the portability of the suit itself, from a one place mounting at his garage, to a suitcase
and now a kind of a simple “chest badge” that could carry all that with the miracle of
nanotechnology.

 Now with this in mind, imagine the bugs and vulnerabilities in the software you
are working on, worked or will work doesn’t matter, they are a pile of Jira tickets in a
lost backlog that no one will ever touch? Or worse, they are not even documented any
how? Or, you constantly evaluate and test them to make sure that they go through an
impact or risk analysis to guarantee a better incident response management when things
go wrong? Or even to know what are the consequences of that bug / vulnerability in
your environment in case they became an attack?

 It’s very common to see companies handling their bugs, they have Q&A teams
full of Engineers to look for problems in their products and that’s really good, they have
developers more and more experienced, that tends to avoid many bugs, well, at least the
silly ones. It’s not so hard to find companies applying techniques like TDD on a daily
basis or even Q&A teams that are capable of creating automated tests, this is awesome. It
took some time for that to happen, I remember when I started coding when I was 15
around 2002 (last time that Brazil won the World Cup by the writing of this book), the
developer was the tester, there were testing teams but not so common like now.
Especially because by then, Visual Basic and Deplhi were the peak of programming

26

languages and Web development was still growing and becoming popular. So the
Client-Server Desktop systems were much more popular and let’s be honest, much
easier to test and validate. But, the same does not apply to threats or vulnerabilities.

 Bugs are expected, everyone knows about them, accepts them and even enjoys
them, like, as a developer I was happy (sometimes) to find a bug and fix it that means I
won’t “harm” my customer or end user right? Even when the QA Engineer was
reporting some stupid bugs, so called non blockers, I was happy it was all part of the
improvement of the product (software) to be as perfect as it can be, considering of
course, the time and resources for that. But, when you change the word BUG to the word
VULNERABILITY the magic happens, no one cares anymore, what I most hear about it
is (in order):

1. It’s a false positive; (99% of the cases)
2. Our product / company / brand is not a target for hackers (crackers);
3. This will never happen, who would know that?
4. It’s very hard for an attacker to do that.
5. Ah, if this happens then we have bigger problems.

 With vulnerabilities everyone seems to get crazy and the first reaction is
defensive, evasive or protective, like, it’s just a different category of a bug, nothing else
why is that everyone is scared of it? (We will discuss it later). For now, let’s come back to
our superhero and more Threat Modeling stuff. One nice thing that I like to say about
Threat Modeling is that you need to think about the unimaginable.

The unimaginable threats

Sometimes you are going to face threats that you never imagined. Well, if you are
not prepared for the easy ones, imagine the hard ones.

 Antman destroys Iron-man's suit scene -Captain America Civil War 2016

 This is one of my favorite scenes, there is a lot to learn so stay focused now. First
we can see that Tony’s first reaction is to ask Friday what is happening when he noticed
some failing in his hands thrusters, we will see in the future chapters of this book more
details about Application Monitoring, but for now see that he does not ask anything for
her directly, he just calls her name and she knows what to answer right in time. She then
says: “We have some weapon systems offline”, and Tony’s answer is: “They what?”, he
is so surprised because he knows his “software”, he knows his “product” because he
designed it, so how could it have some “weapon systems offline” out of sudden? Then
the funniest part when Ant-Man starts to talk to him: "It's your conscience, we haven't
talked much these days." At this moment you can see Tony's desperate face calling for
Friday one more time, and she decides automatically to deploy the fire suppression

27

https://www.youtube.com/watch?v=O6SSRp3phx4

system. She also doesn't know for sure what is happening, they know the impact but
what is causing that impact, no idea. Luckily the fire suppression system worked and
expelled Ant-Man out of his suit.

 One of the biggest responsibilities during a Threat Modeling session from the
participants (specially the security ones) is to imagine the "crazy things", it's to think
about the possibilities of attacks, even if they look impossible or funny sometimes, the
thing here is, what is the impact? Can it destroy us or just tickle? Tony never imagined
that a small man would first exist, second get inside his suit and "shut down" some
systems, and it's ok because at the end of the day we can't think about all the
possibilities, it's impossible by nature. But considering his work so far, he had a suit
capable of handling it, if not he would be out of combat, considering also that Ant-man
would not kill him, it was a fight of stopping each other not killing each other. And we
finish with a few questions, how is your software today? Is it prepared for soft threats?
How about hard threats? Can it handle a simple SQLi attack? Can it keep resilient
during a DDoS attack? How about an insider that has access to the database? Think
about that! Ah and by the way, he handled the Ant-man threat with the nanotech suit 🙂

When Threat Modeling does not work

A fix for each problem?

 In Iron Man 3 we see the Iron Legion, basically a bunch of Independent Iron Man
Suits, that were controlled by Jarvis and could act autonomously to support Tony Stark
in any situation. He got to this point, because he was already obsessed with the fact that
aliens now could invade earth as we saw in The Avengers, that's why he started
improving even more his suits and power because he was sure that bigger threats were
about to come.

28

It's clear that he tried to create a fix for each possible problem (threat) in Iron Man

III with the Iron Legion, but it’s impossible to scale at this point. Yes he was a billionaire,
but still… how to build something for a threat that you don't know how it looks like?
But still, a nice try that helped him a lot in the future versions, this was a very good MVP
project for the future nanotech suit I'd say.

And here is the point, if you try to apply threat modeling to the whole system it
won't work, you know why? Because the entire system is too much, and not everything
in your system is critical, yes there might be some specific scenarios but in general the
softwares around is critical in some specific functionalities. So, you only apply threat
modeling to those scenarios where the significant security risk is visible and you need to
protect, for example, you have an internet banking app and clearly the money
transactions have more risk than just seeing the transactions history. Threat Modeling is
a manual work, hard to automate and scale so, focus is very important one other advice I
can give you is, go for the granular level like, take a functionality like login, or user
registration to threat model, not the user journey workflow that is bigger and seems to
have a lot of small functionalities within it. Also, do not threat model one function or
method, it's nonsense.

Lessons learned, always

 Good examples is what we need, we need to learn and have inspirations to be
proactive, otherwise we will keep doing cyber security reactive and very often there is
no time to react, for example:

1. In Captain America Civil War during the fight between Team Iron Man and Team
Cap Vision hitted by mistake the Iron Patriot, he was aiming The Falcon but
hitted Iron Patriot making him lose his suit source power which made him fall.

29

 Tony tried to fly and save him from falling into the floor, but there were not
enough resources at that moment, so the Iron Patriot a.k.a. Colonel Rhodes friend of
Tony felt, and became paraplegic lucky because that fall could have killed him.

2. Later in Avengers Infinity War when the spaceship was coming back to space
after invading earth Tony chased it and for a moment the spaceship was faster
than him, he then asked Friday for a “support” and she gave him a boost, kind of
a turbo flight speed mode, that made him able to catch the spaceship.

 One more time Tony is showing us that the constant improvements are necessary,
and they will NEVER be enough, there will always be a situation where problems, risk,
damage will hit you and, how do you deal then? How much will it hurt? How much will
it cost? He had a flaw (not enough flight power), he improved with the boost mode, easy
right? I will ask you again, are your softwares are also like this? Every new version is
improved from a security perspective?

Frameworks

 There are few Threat Modeling frameworks out there, for all kinds of threat
model you want to do you may find something that fits your needs, but here I want to
bring you maybe, the most popular list of frameworks that you may want to look into:

● STRIDE
● PASTA
● LINDDUN
● Attack Trees
● Persona non grata (PnG)
● Security Cards
● Hybrid Threat Modeling Method (hTMM)
● Quantitative Threat Modeling Method
● Trike
● VAST Modeling

30

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://threat-modeling.com/pasta-threat-modeling/
https://linddun.org/
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=516617
https://securitycards.cs.washington.edu/index.html
https://insights.sei.cmu.edu/library/a-hybrid-threat-modeling-method/
https://dl.acm.org/citation.cfm?doid=2898375.2898390
http://www.octotrike.org/
https://threatmodeler.com/

● Octave

Feel free to try them, at list a simple “Hello World” with each one will be helpful to
make you understand their strengths and weaknesses, which ones might be easier than
others, and which one might be a perfect fit for your process.

Conclusion

Threat Modeling is about imagining the unimaginable, the bad guys have no
limits when they come after you, why should you have limitations regarding your
Application Security process? Remember that after The Avengers, Tony starts to freak
out with threats that the earth can suffer, because in Iron Man 1 and 2 the threats were
“man”, “technology”, guns etc… but in The Avengers, fucking aliens came out of the
space in a fucking warmhole in the middle of New York so, we need to be prepared
right? Because of that came Utron (Avengers 2) and the Iron Legion (Iron Man 3),
because he knew something worse would come at any time, and he must be prepared to
save earth at any time from any threat.

I don’t want you to freak out about security (maybe I do), but I do want you to
really care about the software you deliver, how many people can be impacted by a
security issue you might have? How the society may be impacted? Threat Modeling not
only helps you create a culture of security, but directly affects the quality of your
software in the end, since you care about security requirements from the beginning of
your SDL.

Simple example of Threat Modeling

Imagine this Functional Requirement:

 FR 1 - Login

 The login page should be the first page that users see in the modified application.
It should provide two text fields - one for entering a login name and one for entering a
password. In addition, it should have a command button that initiates the password
checking action. If either of the text fields is left blank it is an error that must be reported
to the user. If both fields are filled in but there is no record of the username or the
password is incorrect that must also be reported to the user.

Now, imagine some simple questions:

● Brute force attacks – There should be a captcha that must be solved prior to login.
● Encryption - Both username and password must be encrypted using the

algorithm xyz, either during transport of the data or storage.

31

https://insights.sei.cmu.edu/library/introduction-to-the-octave-approach/

● Social engineering – The message of wrong login must not specify if the

username or password are wrong to avoid telling that one or the other is correct.
● Log and monitoring – Each login attempt must be registered with at least

minimum data considering the 5Ws, Where, What, Who, When and Why
including the status (logins success or not) .

 The output of these simple questions are a few powerful security requirements
that would make the software more protected from the beginning, if this login page is on
production already then all these risks are also, if the security measures are implemented
from the start, these risks are mitigated by default, that’s the beauty of Threat Modeling,
identifying problems before even the software exists. Even further, what if this
“brainstorm Threat Modeling” happens based on the list of Functional Requirements?
Then the Funcionation Requirement itself could be a merge of Funcional and Security
Requirements, avoiding some “bypass” on the Security Requirements since they are “not
business requirements” it’s easy to “not do them” during the software project
implementation.

32

Chapter 2

DevSecOps

“AppSec and DevSecOps are different things!”
—Cássio B. Pereira

33

DevSecOps is not AppSec and you should know it!

Clearly Tony Stark realized that carrying a luggage, or coming to the “garage” to
get his suit was not the best way to have it. It should be portable, even pocketable, easy
to mount wherever he is, easy to carry. We saw in Iron Man III that the prototype Suit
was able to have independent parts now, easy to mount, scalable, each part could
literally go to him wherever he was and even he could choose to make the suit mount on
somebody else. The same we saw in Captain America Civil War when he was wearing a
simple watch that had defensive and attacking capabilities, and was very useful during
the small fight against the Winter Soldier, he had a “flash bang” and a sound pulse to
make the enemy stunned, plus the bullet proof material that saved him from being shot.

Let’s think together here, what is best or easier, to secure a whole monolithic
system, or different microservices? The point is, you don’t need to protect your whole
house, just the room where you store the most valuable assets. Or the whole house if it's
the case, depending on the criticality of your business.

For Tony, the main asset to protect is himself, his life as a human being. Ok, the
suit could be a chest protector for the heart and a helmet for the head? Yes, but still he
would be vulnerable, so the whole body suit is more feasible. Lucky for our modern

34

software development is not like this, we might want to protect the payments API
(api.system.com/payment) than the list categories API (api.system.com/listCategories)
for example right? They both are part of the same system, but clearly one has much more
business impact than the other, PII must be involved and so on and so forth.

I will try to focus this chapter on the DevSecOps stuff, touching points of
AppSec. The whole AppSec approach is regarding taking care of the Application itself,
the software itself, the code, the .exe .jar files etc etc. The DevSecOps approach is
protecting everything that is involved in the creation of the application, the whole
supply chain (yes, not only 3rd party libraries) but the IDE, CI/CD tools, Ticketing
System, Chats etc, everything that is part of the SDL. To understand better let's see the
DevSecOps Manifest below and I also recommend you to check their website:

Leaning in over Always Saying “No”
Data & Security Science over Fear, Uncertainty and Doubt

Open Contribution & Collaboration over Security-Only Requirements
Consumable Security Services with APIs over Mandated Security Controls & Paperwork

Business Driven Security Scores over Rubber Stamp Security
Red & Blue Team Exploit Testing over Relying on Scans & Theoretical Vulnerabilities
24x7 Proactive Security Monitoring over Reacting after being Informed of an Incident

Shared Threat Intelligence over Keeping Info to Ourselves
Compliance Operations over Clipboards & Checklists

These nine points describe how things should be, they might be a little bit
complicated to understand at a glance, but I'll try to go over the topics during this book.
For now, I want to concentrate on 3 or 4 pillars that I consider for DevSecOps to really
run smoothly:

● Culture (people) - To make / get everyone within the SDL to participate.
● Process (strategy) - To have a structured way of how-to.
● Tools - Otherwise, you won’t scale.
● Automation - Automation is the key to make your AppSec / DevSecOps scale

and work properly.

To understand a bit better, I created the following to make it clear how is the
world nowadays if we do not consider the DevSecOps approach:

35

http://api.system.com/payment
http://api.system.com/listCategories
https://www.devsecops.org/

Before DevSecOps - Security Teams

● Say no to most things.
● Discover vulnerabilities in production.
● Doesn’t know how to deal with other teams.

Before DevSecOps - Development Teams

● Does not prioritize the correction of vulnerabilities;
● Believes that the best solution to the problem is yours;
● Your code doesn’t crash;

Clearly the teams does not talk or interact in a proper way, the whole
communication and interaction is about power and ego, and developers and security
guys can be fucking annoying with that, believe me I've been in both sides, so the
DevSecOps philosophy is:

36

Culture - People 🤝

Good ✅

● Knowing how to say yes responsibly;
● Disseminate security concerns;

Bad ❌

● Wanting to participate in all decisions;
● Practice security by obscurity;

Process - Strategies ⚙

Good ✅

● Start with simple processes;
● Always generate metrics;

Bad ❌

● Bypass processes for quick deployments;
● Wanting to automate everything;

Tools - Scale ⛰

Good ✅

● Adopt Open Source solutions;
● See how other companies do it;

Bad ❌

● Not wanting to spend $$$ on tools;
● Wanting to use all available;

Automation 🤖

Good ✅

● Automating a whole flow, not part of it.

Bad ❌

● Trying to automate everything.

37

Automation as a critical factor of success

The whole SDL - Software Development Life Cycle is a complex ecosystem
considering the number of tools, processes and integrations in place, the scale of it is
already unmanageable, on the following picture you can see in a high level parts of the
SDL:

 And without some automation, the simple goal of creating a simple software can
become a nightmare. From the IDE to the Cloud, through the ticketing system, SCM,
CI/CD tools, dashboards and flows, how can everything work manually? I'd say it's a
mix, automate whenever you can but you will survive with one or two manual tasks.

Conclusion

DevSecOps is part of AppSec, which means DSO is another area that requires
attention. Is not only security tools integrated in the pipeline, or automatic scanning
your PRs, is much more for example:

● These tools properly configured? Your AST scanners?
● The SAST has a proper rate of false positives? Did you check it? How about the

true positives?
● Is the SCA resolving the dependencies properly? Not missing anything?
● Do the pipeline steps have proper access management? Who can disable a

security step?
● Do you collect KPIs of your AST scanners?
● How is the developers' machines hardening?

38

Chapter 3

Vulnerability Management

“Know your problems!”
—Cássio B. Pereira

39

 I’d dare to say that Vulnerability Management is where most companies fail
implementing an AppSec program. This is just a regular process and, still, companies
neglect it. Why is it so difficult tracking a bug / vulnerability? Let's imagine a simple
flow, the security team or whoever in the world found a vulnerability and reported it to
the company, someone validates it and addresses it to the team / person responsible for
fixing it. There must be some prioritization, it can be something very urgent or
something that can wait X time. Then, a fix is applied, someone tests it, deploy to prod,
done. Simple right?
 I think that at this point it’s pretty clear that Tony Stark handles his shit. Not by
mistake every new suit, or Mark, has an improvement. Either to the defense power or
attack power, sometimes even both. Let's remember when he fought Captain America
and the Winter Soldier in the Civil War movie, his targeting system was damaged and he
was not able to shoot properly, forcing him to do the "manually" aiming. When later Iron
Man fought Thanos in the Avengers Infinity War, he was now able to fire remote guided
missiles, without the need of aiming even.

How about your software? Do you have a bug list? How about a vulnerability
list? And a security improvement list? Security requirements maybe? Ok no worries…

Vulnerability Management Process

In order to achieve the goal of really managing your vulnerabilities, you need to

prepare for that, you can't monitor / handle all assets in your company, most of them are
not even critical enough to make you spend time / money on them (for this purpose).
So, first you do a Preparation, that is composed by:

40

● Determine scope;

○ What is going to be part of your vulnerability management.
● Define roles and responsibilities;

○ Who will be responsible for what?
● Select assessment tools;

○ What are going to be your scanners?
● Define policies;

○ What are the rules for the results?
● Identify assets;

○ Which systems, repos, etc are you going to scan?

Then… you apply this simple flow:

I will explain one by one using a SAST scan example:

● Evaluate (scan)
○ Run the SAST scan in your repo.

● Prioritize
○ Get the results and prioritize them, for example, the results of the SAST

scan was only 1 HIGH vulnerability. But, it's an impact on a legacy
system that has no critical business impact for you, so you can tag it as
MEDIUM.

41

● Act (fix the problem)

○ Address this vulnerability using your ticketing system for example, and
set the expected SLA considering the MEDIUM vulnerability.

○ Developer will fix and make it available for testing.
● Reevaluate (scan again)

○ Scan again the same repo, with the same configurations.
○ The vulnerability should not be there anymore.

● Improve
○ Think about ways of automating:

■ The scan
■ The results track
■ The results notification
■ The fixing time
■ The re-scan
■ Etc

● Repeat…

This macro process works pretty well for any security scan / testing with slight
changes according to each test if really necessary, but the whole idea is the same, you
test, prioritize, fix, validate and improve.

Tools

You can use any bug management system, task system, ticketing system etc that
will work the same, the secret here is to centralize your vulnerabilities in one place, you
might have a SAST, SCA and a DAST scan that you want to consolidate the
vulnerabilities to optimize the management, you can't have 3, 4 ,10 different places
otherwise it won't scale and it won't flow properly. One nice tool to use is Defect Dojo
from OWASP. Or you can still use:

● Jira (Popular)
● Excel ()
● Github Issues (Cool one)
● Notepad! (Just kidding, or not)

Reference

 I'm not Tony Stark (yet) so I did not create any of this, I just searched and applied
what is, in my opinion, the simplest process to do Vulnerability Management, here is the
reference and here is the PDF.

42

https://www.defectdojo.org/
https://www.sans.org/white-papers/34180/
https://www.sans.org/white-papers/34180/
https://sansorg.egnyte.com/dl/2IL7fioFhM

Chapter 4

Application Monitoring

“Know your application before your enemy.”
—Cássio B. Pereira

43

 Sir, Take a deep Breath Iron Man 3 (Clip) 2013

 Note that in this scene Tony did not ask for Jarvis help, Jarvis KNEW WHAT
THE FUCK TO DO IN THE RIGHT MOMENT, you might wonder why am I screaming?
BECAUSE FUCKING DEVELOPERS, DOES NOT EVEN KNOW THEIR OWN
SYSTEMS, and this pisses me off. So I will ask you a few questions:

● How does your application behave under attack?
● It just fall?
● Do you have any logs?
● Automatic alerts?
● Do you even know that you are under attack?

 After two decades of working in the industry I
had the chance to meet a variety of people and different
businesses and without any regret I can affirm that 90% of
developers do not even know what they are building,
they know the task, the feature, but the whole? No. They
know the product, the name, the goal yes… but when you ask about the application as a
whole, at least a macro view they have no clue. And, that's ok, they must focus on their
"task, feature, ticket etc" not the whole, but, during a security incident when the DFIR
team must act to either contain the threat or just to investigate, nobody has a fucking
idea of the whole system, what are the services, witch on talks to each one, where is the
database hosted, who is the administrator, who is the product owner responsible for
decisions… So many questions that in theory are easy to answer, but during a crisis,
DFIR teams are ALONE, they must do an internal FORENSICS first to know all this,
then they can start digging into the incident itself, and this much time usually is very
critical.

 So my point here is that collaboration from developers should be much more
taken seriously, they know how the application works / was built, they must know, not
only to make their own work easier, but also to support the whole company structure
regarding security posture. I once had an incident at a company that I worked for, some
APIs were being abused by bots, raising the requests rate to 500.000 in an hour during
the morning. The First thing was, give me the logs, I want to see the request IP,
geolocation to understand the scenario, there were no logs. Ok. Turn on the logs, WAIT
FOR THE BOT TO RUN AGAIN, basically, wait to be attacked again so i could have data
to check on, could not only block requests, block what? Then the BOT again, IP
addresses coming from Amazon… After two weeks of trying to understand (and I had
the suspicions already), during an informal coffee with a developer, he mentioned that
his TESTS ON APIs were fine, I asked for details and for my surprise (or not), was him
just testing the APIs there were "under attack". But until then, no one knew anything
about those APIs, who had the URLs, who had access to it (they were public, but

44

https://www.youtube.com/watch?v=jhJoNUfF0W4

suppose to be for some customers only), who was in charge of development (few teams
were), so many simple questions, that in a company without the minimum of
organization and discipline, during a crisis, can be fatal.

Do you know what is the normal behavior of your applications?

 Tony Stark knew (with the support of his A.I. assistant of course) at any time, a
bunch of useful information, he had all the kind of data regarding his suit of course plus
a lot of data about the external environment such as air control traffic, climate, earth
perimeter etc. Check this next scene, in real time Jarvis defines a route of flight to outrun
the drones, even making some of them crash:

45

It is a perfect example of application monitoring, you must have the information

in order to know what is happening and decide what to do, especially if you are under
attack. And not only having the information, but the right information at the right time.

Information is the key

Information is EVERYTHING for the correct decision making. Tony's suit is
connected to several data sources, JARVIS knows everything to keep him informed at
any time, and sometimes without asking for it, just a few things Jarvis “HAS DOUBT“.
Not only trusting data sources, but also, processing real time information like in this
scene:

 Iron Man Plane Rescue Scene - Iron Man 3 (2013) Movie CLIP HD

 See that during all the time Jarvis keeps him informed of the altitude and is
showing him on the screen the "route plan" to grab each person? This is so fucking
amazing and a good example of the correct data at the right time during a crisis. And all
that, with a remote controlled suit, Tony was not wearing it as we can see at the end of
the scene. See how fast sometimes we need information in order to make a hard
decision?

Logs

In computing, data log is an expression used to describe the process of recording
relevant events in a computer system. This record can be used to restore a system to its
original state or to let someone know its behavior in the past.

46

https://www.youtube.com/watch?v=QkCFtL5sH40&t=3s

It's all about behavior, knowing the behavior of your software is essential for

adequate protection, only with continuous monitoring is it possible to know the
behavior of your software. Once you know / determine the normal behavior, it's easy to
know / determine the anomalous behavior, for example:

Your authentication API has 500 requests daily based on data observed during 30
days. We can assume that this is the normal behavior of your authentication API, the
amount of requests daily is 500. Then one day you have 500 per minute on your API
during the first hours of the day, what is the first thought? What is the first reaction?
Clearly something not normal is happening, you will dedicate some time to understand
and react / take a decision about what to do, but without this data, it would be just a
"normal day", maybe the system would be a bit slow but, nothing much to worry about.

Managing logs is simple, even do it might be expensive:

● Generate logs
○ Make your application generate the logs you need, also the

perimeter architecture like: firewalls, wafs, cdns etc.
● Centralize logs

○ Store these logs in a central way, easily accessible and easy to
manage and correlate.

● Visualize

47

○ Create views and dashboards that present the log data in a

friendly way, reading logs might be time consuming and not
pleasant.

● Adjust
○ Delete irrelevant data, add relevant data. You might want to know

the IP address of a request, but not the size of bytes depending on
the context.

 A very easy way to do this is using the ELK Stack, but you can do this using any
other logging or SIEM solution:

48

https://www.elastic.co/elastic-stack

Chapter 5

Application Security Program

“Security is everyone's job.”
—Cássio B. Pereira

49

Points to consider

 We all know by now that Tony Stark not only got "crazy" about his safety and
protection, but also about the safety and protection of the planet earth, especially after
The Avengers when aliens came out of a worm hole in the middle of New York city. He
then, started to contaminate everyone with his ideas, Ulton was the project of creating a
"Suit around the world", that failed yes, but still a try 🙂, so to avoid your AppSec
program failing, here are some points to consider:

● Define critical projects;
○ What are the real critical projects to your business?

● Communicate the teams;
○ They must know about the AppSec Program, how, when and why are the

minimum information that you need to provide.
● Conduct training;

○ Each audience has specific needs, developers must learn how to fix a
vulnerability, but Q&As must know how to exploit them for example.

● Appoint the Security Owner;
○ It must have an Owner, someone within the team, squad, tribe whatever

that is responsible for the Security Hat.
● Define baselines;

○ What are the minimum requirements that you want to implement? For
example, all code must have a SAST scan prior to merge to the main
branch.

● Define acceptance levels;
○ What are the risks that you accept? For example, you can define that all

HIGH and CRITICAL vulnerabilities must be fixed prior to deployment.
● Define CI/CD strategy;

○ Security must be part of it, doesn't matter how you do it, include security
on your CI/CD. Scans, checks, tests are examples of tasks that can be part
of it.

● Generate metrics & KPIs;
○ It's important to know how your AppSec Strategy is performing, defining

and collecting KPIs is important to measure that.
● Gamification

○ Sometimes it is helpful, even if you consider that developers should not
be rewarded for fixing vulnerabilities for example, because they should
not create them in the first place, it's a tool to consider for sure.

Coming back to Tony Stark he thinks security, he breathes security, he lives
security, he is neurotic about security. Usually this is the mindset of the Security team,

50

and it’s wrong. Everyone is responsible for security. Imagine the following scenario,
you live together with someone, one of you leave the house earlier then the other, but,
someone left the front door open, someone went inside during your absence and stole all
your assets such as TV, Video Game, Sound Bar, Laptop etc a huge financial loss for both
of you. Whose fault it is? Actually, who left the front door open? You who left first? Your
partner that left after? If you, why did not your partner check then? Do you realize that
it doesn't matter? In the end the loss impacted both of you, all your valuable assets were
stolen, if you or your partner left the door open is the minimum of your problems.

I hope that by reading this book you will find out that you are also responsible
for security, given your role and position more or less responsibilities or tasks that's for
sure, but one way or another you are not excluded from the security team, you might
leave the front door open, you might not check if someone left the front door open, but
you have responsibility too, and the next scene explains why:

 Iron Man 3 2013 ► Tony Stark vs Ellen Brandt Bar Bud Light Scene ► Movie CL…

Tony improvises when needed, even without his suit he was able to dismiss a
real and hard threat. His life was in danger, so one more time, with the tools and
conditions that he had, he handled the situation. I often see SDL Engineers (anyone
involved in the SDL) but I don't have IDE X, I don't have the budget Y, I prefer to use the
framework Z blah blah blah, all excuses to not make the right thing, all "ways out" of
assuming the security responsibility inherent to their role, let me tell you something,
fuck your IDE, framework, budget, there is always a way of doing it, so, do it.

51

https://www.youtube.com/watch?v=Jr78Gh4tmIA&t=97s

Chapter 6

Why?

“Crackers, cyber criminals, cyber war…We are just an ordinary company.”
—An ordinary company

52

 Once Tony Stark said:

“Gods, aliens, other dimensions…I’m just a man in a can.”

Stark, Tony - Iron Man 3

 Once few companies said:

“Crackers, cyber criminals, cyber war…We are just an ordinary company.”

An ordinary company

 And this mindset has taken over the minds of millions of executives, engineers
and professionals around the software (I.T.) industry, witch is kind of ok if you analyze
the nature of some business, like a simple static website to show what a company does
might not be a target for a cyber criminal at a first glance, compared to a banking
application where billions of real money transactions are processed daily, but from the
perspective of an organized cyber crime group, both are equal and has, maybe, the same
earning potential.

 And you might think the same, Cássio I do work in a software company but our
software is not critical, it's just a warehouse management system for marketing materials
like pens, banners and swags, what can go wrong? It’s not about the company operation
in this case, but about the data that this company owns, if I want to harm someone, I can
be interested in the events that this company promotes, since you store the marketing
material, when a big request is done something might happen, so I can track to
understand the operation in other to achieve what I want as a “malicious actor”. Or I can
just focus on diverting materials to sell for example. Always remember that, for
malicious actors, there are no limits on what they can do.

 So, your company might be a target just because it’s a brand attached to some
marketing that went wrong, or a target by the assets itself such as money, materials or
valuable resources, sometimes for positioning publicly to the government side A or B or
even due to a public case where this company might did something bad to a former
employee. It doesn’t matter why (in this case), but you are a target for someone, you
might not just be found, yet.

53

Why? Well…

 Some people might not realize yet, but our fucking life is controlled and guided
by software EVERYWHERE, from the chain of production of food, to the payments and

54

shopping we do, there is a software somewhere, so protecting software nowadays is not
anymore protecting yourself pockets or businesses, is protecting the reality and the
society itself.

 If your car has a software failure, so what? No need to be the news models no,
any old car with Electronic Fuel Injection is already done by a software. So if you are a
powerful executive in a big company, or a member of the government, you might be a
target for someone that might want to harm either you or your business somehow.

Conclusion

Maybe your company is not a critical infrastructure provider or a business itself,
but what impact would it bring to the society (peoples life) if you have an incident right
now? Think about it next time you code!

● Some people lose money?
● Some people won’t be able to pay for something?
● Do your company employees lose their jobs?
● What else?

Remember:

● Everything is controlled by software;
● We need to build a better society;
● We need more individual protection;
● Because our lives depends on it.

55

Chapter 7

Bônus

“Because I really like Iron Man.”
—Cassio Pereira

56

In this scene in Avengers Infinity War, the team tried to take Thanos' Gauntlet
and almost succeeded, but in the last moment he woke up and got it back.

Knowing this, Tony Stark prepared his nanotech suit to be able to incorporate to
and from any other material, so when he had the opportunity to take Thanos’ Gauntlet
again on the Avengers Endgame, he managed to do it just by touching it.

We see more of this capability after on Spider-Man No Way Home, when Peter
(actual one) got attacked by Dr. Octopus and his tentacles touched Peter’s nanotech suit,
the nanotech automatically incorporated into the tentacle, making it able to be controlled
by Peter.

57

In Iron Man I he was kidnaped by the terrorists, kept in a cave where it was
impossible to track and find him.

Then, in Iron Man III his suit was now able to come from anywhere, so there was
a tracking system, plus the capability of being armed with his suit, or at least part of it as
we saw in the movie. Also, he was able to improvise, since his suit came part by part, he
had to fight to make himself free even without the full suit.

And let’s not forget the powerful watch that he had, that moment the suit was
not allowed to wear, since he submitted himself to the Treaty of Sokovia that originated
the Civil War. But still, without his suit, he was not fully vulnerable and unarmed.

58

Spider Man also had a tracking system in his suit, when Tony Stark invited him
to the Avengers and made him a new suit, he wanted to protect the kid (since he knew
what could happen). Of course, Peter hacked the suit and removed the tracker to do
some shit, but ok.

On Iron Man I the Obadiah used some kind of Sound weapon to make Tony
paralyzed, you can see it here

 Obadiah Stane Steals Tony Stark's Arc Reactor Scene | Iron Man (2008) Movie CLI…

Later in the Avengers Age of Ultron, “same sound” affected everyone in the
room but not Tony, you can see his reaction in the first 5 seconds of the following video,
not needed to watch all: Avengers vs Ultron First Fight in 4K Ultra HD [Fight Scene]

59

https://www.youtube.com/watch?v=LwmjAOM8Hb8
https://www.youtube.com/watch?v=6olc5-CPzts

Chapter 8

The End

“Pay attention to this scene!”
—Cassio Pereira

60

 Tony Stark & Captain America Argument Scene - Avengers: Endgame Movie (Scene) | M…

Here is the transcript of the above scene, and I will comment later, but watch it
again! The most important parts are in bold:

● 00:00:00.080 It's been 23 days since thanos came to
● 00:00:02.080 earth
● 00:00:04.720 world governments are
● 00:00:06.319 in pieces um the parts that are still
● 00:00:08.639 working
● 00:00:09.679 they are trying to take a census and it looks
● 00:00:11.840 like he
● 00:00:14.920 he did exactly what he said he was
● 00:00:17.199 going to do thanos wiped out
● 00:00:21.359 50%
● 00:00:22.720 of all living creatures
● 00:00:28.560 Where is he now? where?
● 00:00:30.800 we don't know
● 00:00:32.640 he just opened the portal and walked
● 00:00:34.640 through
● 00:00:38.160 what's wrong with him
● 00:00:40.160 uh he's pissed
● 00:00:42.640 he thinks he failed
● 00:00:45.200 which of course he did but you know
● 00:00:46.719 there's a lot of that going around ain't
● 00:00:48.079 there honestly until this exact second I
● 00:00:50.559 thought you were build-a-bear maybe i am
● 00:00:52.320 we've been hunting thanos for three
● 00:00:53.840 weeks now deep space scans and
● 00:00:56.960 satellites and we got nothing
● 00:01:00.800 Tony you fought him who told you that?
● 00:01:03.280 There was no fight no he went my face with
● 00:01:05.680 a planet while the Bleecker street
● 00:01:07.200 magician gave away the store that's what
● 00:01:09.200 happened there's no fights okay he said
● 00:01:11.360 did he give you any clues any
● 00:01:13.040 coordinates anything uh
● 00:01:17.040 I saw this coming a few years back I had a
● 00:01:19.119 vision I didn't want to believe it
● 00:01:21.040 maybe I was dreaming Tony I'm gonna
● 00:01:22.880 need you to focus and I needed you

61

https://www.youtube.com/watch?v=RbTFArgiP_4

● 00:01:25.759 as in past tense that trumps what you
● 00:01:28.720 need it's too late buddy
● 00:01:30.560 sorry
● 00:01:32.240 you know what I need
● 00:01:33.520 i didn't shave
● 00:01:35.840 and I believe i remember telling oh yes
● 00:01:38.400 Tony Tony Tony… alive or otherwise that
● 00:01:41.119 what we needed
● 00:01:42.880 was a suit armor around the world
● 00:01:44.880 remember that? whether it impacted our
● 00:01:46.720 precious freedoms or not that's what we
● 00:01:49.520 needed well that didn't work out did it
● 00:01:51.280 I said we'd lose
● 00:01:52.880 you said we'll do that together too
● 00:01:55.600 and guess what cap
● 00:01:57.040 we lost
● 00:01:58.719 and you weren't there
● 00:02:01.200 but that's what we do right our best
● 00:02:03.040 work after the facts what are the
● 00:02:04.560 avengers we are the avengers not the
● 00:02:06.960 pre-avengers okay right you made your
● 00:02:08.878 point just sit down okay okay no no
● 00:02:10.479 here's my but you don't want me to just
● 00:02:12.000 sit down we need you your new blood
● 00:02:14.560 bunch of tired old meals i got nothing
● 00:02:16.959 for you cap i got no coordinates no
● 00:02:19.599 clues no strategies no options zero zip
● 00:02:22.800 not a
● 00:02:24.080 no trust fire
● 00:02:30.160 here take this
● 00:02:31.680 you find him you put that on
● 00:02:34.160 you hide
● 00:02:37.040 I’m fine
● 00:02:38.879 let me…

 Now let’s discuss this iconic moment of the MCU, where Tony is basically saying:
I TOLD YOU MOTHERFUCHERS! And it reflects 99.99% of the Cyber Security teams
nowadays, we warn about some threat, risk etc and nobody cares, then we shit happens
they come to us screaming in panic, and we have to fix…. but I wish I could just say, I
TOLD YOU.

62

 Unfortunately that’s the reality, the job of a Cyber Security team in general is to
warn about the threats, that might be a risk at some point, that might exploit a
vulnerability and become an incident, yes it’s possibilities that might never happen, and
to be more precise on this possibility a lot of tools bring nice capabilities, together with a
nice business impact analysis, you can basically focus your efforts on fixing what
matters, instead of trying to deal with hundreds or thousands of vulnerabilities around.

 In this scene, Tony is making a reference to Ultron that initially was an idea of
“suit around the world” to protect it, as we know didn’t work properly and there was a
mass, but after kind of worked, with the creation of Vision on the same movie. But we all
know that Tony started saying this right after The Avengers and the invasion of New
York. Due to the fight because of Ultron, that Captain America didn’t want it together
with others that’s what Tony is mentioning now, because now Thanos came and
destroyed everything, and Tony clearly knows that with more time and tests, Ultron
would be the perfect weapon / shield against Thanos, the biggest threat so far. We also
see in the What If series, that Ultron kills Thanos in 1 second!!

 Another very important point in this Tony moment is that he mentions “we
needed… Was a suit armor around the world remember that? Whether it impacted our
precious freedoms or not, that's what we needed!” This is a moment for reflection,
because once Ultron idea came out, the worries of others was exactly the “freedom”, that
Ultron would be monitoring everything all the time, kind of.

 Here the parallel with AppSec is very clear, nowadays developers (and others)
have all the power to run a company and its decisions somehow. If they don’t want to
run code scans, the company easily accept that, if their CI/CD process is slow due to a
security testing, remove it, if the IDE plugin that checks the code quality is no “fancy
enough” they scream and remove it, if the DAST scan on a Q&A environment is not
performing well, why we need it? If a pentest is needed to run, they ask why? We are not
targets. Sometimes when we are able to run a SCA or SAST scan, and bring them some
vulnerabilities to fix, their first reaction is: it’s a false positive or worse, it was always like
this, why do we need to fix it now? The thing is, everything is priority but security, and
at some point I agree with that, risk taking is part of human life since the creation, but
that doesn't mean being negligent, doesn’t mean that what only matters is money and
the business running (yes it is, but not only).

 And what I most like about Tony’s speech is when he says: “but that's what we
do right our best work after the facts, we are the avengers we are the avengers not the
pre-avengers”, this should be the Cyber Sec slogan, we act after the facts, more specifically
the AppSec slogan, since the whole job (or majority of it) is to prevent and protect, we
end up always cleaning shit after something happened. And more funny, when
something happen, the whole company call the Avengers (Sec team), and sometimes
works, sometimes the incident is not so critical that the Sec team can handle, but very

63

often is not, very often the company is on the world news because of a security incident
that impacted not only the company, but the society itself. While I was writing this book,
there was the CloudStrike + microsoft incident, not even a security incident just the old
and good bug, that caused a outage on the CloudStrike agent for Windows hosts, the
whole fucking world stopped due to this bug. Just as an example of society impact,
flights stopped / got delayed, payment systems, stores etc anything running on
Windows using CloudStrike agent, stopped 🙂

 Look, I was a software developer for over a decade. I created code for Financial
companies, for Tourism, for Retail, for e-commerce, for Marketing agencies, for Logistics
and a few more. I know how the SDL process and how companies really focus on
delivering and keeping up and running, yes ok. But if a fucking security issue, only one
got exploited, the business might not be up and running dammit. So, since I migrated
my career to AppSec, I’ve been trying to make companies and individuals realize this
importance, not only scanning and finding / fixing problems, but also stopping creating
them in the first place. To run an AppSec program I’d say, it’s easy (it’s not), to buy a
SAST / SCA and start scanning? 5 minutes job, to fix? Maybe an hour, to stop creating
this code problems? Maybe the whole life journey of training for a developer, to be able
to, at least, think before setting up a parameter without validation.

64

https://www.cnn.com/2024/07/22/us/microsoft-power-outage-crowdstrike-it/index.html

	
	Preface
	
	
	Author

	
	AppSec - Iron Man
	Warning
	
	Brief intro
	Threat Modeling
	Contextualizing
	Threat Modeling
	Threats
	Goals
	Requirements
	Lessons learned
	Reflexion

	Deep knowledge
	Threat Modeling - HOW

	
	Use case - Veronica A.K.A. Hulk Buster A.K.A. Mark XLIV
	Threat
	Goals
	Requirements
	Lessons learned

	Incident Response - Learning from facts and mistakes
	Back to Iron Man I
	When a vulnerability became a feature

	The unimaginable threats
	When Threat Modeling does not work
	A fix for each problem?

	Lessons learned, always
	Frameworks
	Conclusion
	Simple example of Threat Modeling

	DevSecOps
	Before DevSecOps - Security Teams
	Before DevSecOps - Development Teams
	Culture - People 🤝
	Process - Strategies ⚙️
	Tools - Scale ⛰️
	Automation 🤖
	Automation as a critical factor of success

	Conclusion

	Vulnerability Management
	Vulnerability Management Process
	Tools
	Reference

	Application Monitoring
	Do you know what is the normal behavior of your applications?
	Information is the key

	Logs

	Application Security Program
	Points to consider

	Why?
	Why? Well…
	Conclusion

	Bônus
	The End

